An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases
نویسنده
چکیده
An innovative intelligent diagnostic system is proposed in this study, which is primarily reflected in first heart sound (S1) and second heart sound (S2) automatic extraction, frequency feature matrix (FFM) automatic extraction, diagnostic feature y1 and y2 generation based on principal components analysis (PCA) and diagnostic method definition based on the classification boundary curves. Four stages corresponding to the diagnostic system implementation are summarized as follows. Stage 1 describes an envelope ET extraction from heart sound signals. In stage 2, heart sound segmentation points and peaks are first automatically located based on a novel method STMHT, and then S1 and S2 are automatically extracted according to the relationship between the systolic time interval and the diastolic time interval. In stage 3, in the frequency domain, a novel method is first proposed to generate the secondary envelopes SES1 and SES2 for S1 and S2, respectively, and then an STMHT-based FFM is automatically extracted from SES1 and SES2. Finally, the PCA-based diagnostic features y1 and y2 are generated from the FFM. In stage 4, support vector machine (SVM)-based classification curves for the dataset consisting of y1 and y2 are first generated, and then, based on the classification curves, the scatter diagram diagnostic result (SDDR) and numerical diagnostic result (NDR) are defined for diagnosis of heart diseases. The proposed intelligent diagnosis system is validated by sounds from online heart sound databases and by sounds from clinical heart diseases. As a result, the classification accuracies (CA) achieved are 91.7%, 98.8%, 98.4%, 99.8%, 98.7%, 97.8%, 98.1% and 96.5% for the detection of atrial fibrillation (AF), aortic regurgitation(AR), mitral regurgitation (MR), normal sound (NM), pulmonary stenosis (PS), small ventricular septal defect (SVSD), medium ventricular septal defect (MVSD) and large ventricular septal defect (LVSD), respectively. 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Selecting effective features from Phonocardiography by Genetic Algorithm based on Pearson`s Coefficients Correlation
The heart is one of the most important organs in the body, which is responsible for pumping blood into the valvular systems. Beside, heart valve disorders are one of the leading causes of death in the world. These disorders are complications in the heart valves that cause the valves to deform or damage, and as a result, the sounds caused by their opening and closing compared to a healthy heart....
متن کاملDiagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques
Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...
متن کاملDiagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques
Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملAn Efficient Optimal Fractional Emotional Intelligent Controller for an AVR System in Power Systems
In this paper, a high-performance optimal fractional emotional intelligent controller for an Automatic Voltage Regulator (AVR) in power system using Cuckoo optimization algorithm (COA) is proposed. AVR is the main controller within the excitation system that preserves the terminal voltage of a synchronous generator at a specified level. The proposed control strategy is based on brain emotional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Knowl.-Based Syst.
دوره 75 شماره
صفحات -
تاریخ انتشار 2015